Universum

Als Smolin gelijk heeft, lijkt een supernova er voor een lokale waarnemer anders uit te zien dan voor iemand op tien miljard lichtjaar afstand.

Voorbij Einsteins ruimtetijd: de theorie

Op dit moment wordt er koortsachtig gewerkt aan een theorie over de realiteit voorbij Einsteins ruimtetijd. Een mysterieus kosmisch signaal kan snel de lege plekken opvullen. Vaarwel, ruimtetijd, als een viertal rebelse natuurkundigen gelijk heeft. Welkom, impulsruimte, waarin zelfs het verleden niet vaststaat….

‘Einstein ging niet ver genoeg’
Drie eeuwen lang verkeerden we in de veronderstelling dat ruimte en tijd absoluut en onveranderlijk waren. Toen kwam Einstein, die liet ziet dan de tijd van zeer snel bewegende voorwerpen langzamer verloopt. Hij smeedde ruimte en tijd ineen tot één geheel: ruimtetijd.  Op zichzelf gezien zijn ruimte en tijd betekenisloos. Alleen in relatie tot elkaar hebben ze betekenis.

Als Smolin gelijk heeft, lijkt een supernova er voor een lokale waarnemer anders uit te zien dan voor iemand op tien miljard lichtjaar afstand.
Als Smolin gelijk heeft, lijkt een supernova er voor een lokale waarnemer anders uit te zien dan voor iemand op tien miljard lichtjaar afstand.

Heeft Einstein het laatste woord? Lee Smolin, gevreesde kwelduivel van de snaartheoretici en oprichter van het Perimeter Institute voor Theoretische Fysica in het Canadese Waterloo (geen universiteit wilde niet-snaaronderzoek sponsoren), denkt van niet. Met een drietal collega’s willen ze relativiteit naar een geheel nieuw niveau tillen. Elke revolutie kent slachtoffers. In Smolins theorie moet ruimtetijd er aan geloven. Volgens Smolin leven we niet in ruimtetijd maar in een faseruimte.

De beloften van Smolins geesteskind zijn immens. Als zijn radicale claim op waarheid berust, hebben we eindelijk de oplossing voor de informatieparadox en zijn we aardig op weg naar de zo lang gezochte ’theorie van alles’. Althans, iets dat er dicht bij in de buurt komt.

Wat is faseruimte?
Een beetje natuurkunde. Alles, zelfs lichtdeeltjes, heeft impuls. Impuls is massa maal snelheid of, zoals bij lichtdeeltjes, de constante van Planck gedeeld door de golflengte. Impuls is voor natuurkundigen absoluut heilig, nog heiliger dan de wet van behoud van energie. Dat is niet voor niets. Zowel in Einstein’s theorie als kwantummechanica blijft impuls behouden.

Faseruimte is onze bekende drie ruimtelijke en één tijddimensie, samengevoegd met een vierdimensionale impulsruimte. Wat we waarnemen is geen ruimte en tijd, maar energie en impuls. Alles wat we waarnemen berust op een voortdurende stroom van energie- en momentuitwisselingen.  Bijvoorbeeld: lichtdeeltjes reizen van de klok naar je netvlies, waar ze in zenuwimpulsen worden omgezet en naar het optische centrum van je hersens wordt gestuurd.  Hieruit construeren we een beeld van ruimte en tijd. Ook bij natuurkundige experimenten, tot deeltjesversnellers aan toe, is het niet anders.

Net zoals ruimtetijd uiteenvalt in drie ruimtelijke dimensies en één tijddimensie, valt de momentruimte uiteen in energie en drie impulsdimensies. Tot nu toe werd de impulsruimte gezien als een handig wiskundig middel om lastige berekeningen ingewikkeld te maken. Zo is de heliocentrische theorie van Copernicus overigens ook zijn opmars begonnen. Rekenen hiermee was veel makkelijker dan met de ingewikkelde epicykels van Ptolemaeus. Pas later werd deze theorie, waarbij de aarde en de planeten om de zon draaien, algemeen ook als wereldbeeld geaccepteerd.

Max Born’s profetische woorden
De Duitse fysicus (en medegrondlegger van de kwantummechanica) Max Born wees er al op dat verschillende essentiële vergelijkingen in de kwantummechanica hetzelfde blijven, of je ze nou in ruimte-tijd coördinaten uitdrukt of in impulsruimte-coördinaten. Hij vermoedde toen al dat het wel eens mogelijk zou kunnen zijn op deze manier de algemene relativiteitstheorie en kwantummechanica samen te voegen. Dit idee van Born, ‘Born reciprociteit’, had een opmerkelijk gevolg. Als ruimtetijd door de massa van sterren en planeten kan worden vervormd, kan dat ook met impulsruimte gebeuren.  Op dat moment had niemand een flauw benul van welke fysische processen impulsruimte konden laten krommen. Borns idee bleef verstoffen.

Nu beschikken natuurkundigen over krachtige computers en programma’s als Maple (of probeer het gratis Sage) en MATLAB (en voor wetenschappers zonder tienduizenden euro’s, Octave). Kortom: wat de arme Born met pen en papier moest uitrekenen, kan nu door een computer. Voeg hierbij een begaafd natuurkundige als Smolin en vuurwerk is verzekerd. Samen met zijn collega’s Laurent Freidel, ook verbonden aan het Perimeter Institute, Jerzy Kowalski-Glikman van de University of Wroclaw in Polen en Giovanni Amelino-Camelia van de Sapienza Universiteit in Rome, bestudeerde Smolin de effecten van de kromming van impulsruimte bestudeerd.

Hallucinerende uitkomst
Het viertal paste de standaard wiskundige regels toe om impulsruimte in ruimtetijd te vertalen en paste ze toe op gekromde ruimtetijd. Wat ze ontdekten was werkelijk hallucinerend. Waarnemers in een gekromde impulsruimte zullen het niet langer eens zijn over waarnemingen in dezelfde ruimtetijd. Ruimtetijd is relatief voor waarnemers in een gekromde impulsruimte. Volgens verschillende waarnemers is er iets verschillends gebeurd. Dit verschil groeit met de afstand en tijd. Hoe verder weg en hoe energierijker, hoe meer de gebeurtenis wordt uitgesmeerd in ruimtetijd, aldus Smolin.

Een voorbeeld. Stel je bent tien miljard lichtjaar verwijderd van een supernova en de fotonen van het licht hebben een energie van tien giga-elektronvolt (genoeg om toen waterstofatomen uit het niets te scheppen), dan lijkt het voor je alsof het object een lichtseconde van de plek verwijderd is dan die een lokale waarnemer heeft vastgesteld. Driehonderdduizend kilometer verschil dus, m.a.w. “relatieve lokaliteit”[2].

Maar hoe stellen we vast of Smolin en zijn geuzenbende gelijk hebben?  Hierover deel twee.

Zouden de 'koude' en 'warme'plekken in de kosmische achtergrondstraling de overblijfselen zijn van een botsing met een ander heelal?

Zijn er heelallen naast dat van ons?

Zijn er heelallen naast dit heelal? Volgens sommige kosmologische theorieën zijn er meer heelallen dan alleen dat van ons, en merken we de gevolgen als een ander heelal bij het uitzetten ‘botst’ met het onze. Geloof het of niet, maar deze theorie wordt nu voor het eerst experimenteel onderzocht.

Zouden de 'koude' en 'warme'plekken in de kosmische achtergrondstraling de overblijfselen zijn van een botsing met een ander heelal?
Zouden de 'koude' en 'warme'plekken in de kosmische achtergrondstraling de overblijfselen zijn van een botsing met een ander heelal?

Ons heelal heeft volgens de gangbare kosmologische modellen veel weg van een vierdimensionale ‘bol’ – een hypersfeer. Wij leven op het grensvlak van deze voortdurend uitzettende hypersfeer. Dit grensvlak is een driedimensionale ruimte, de ruimte die we om ons heen zien. Dieper in de bol ligt ons verleden, tot het centrum bereikt is – de Big Bang.
Volgens veel kosmologische modellen is onze hypersfeer niet de enige. Er zijn ook andere heelallen, met mogelijk natuurwetten die iets of zelfs radicaal afwijken van die van ons.

Als twee uitzettende hypersferen elkaar raken, zien de bewoners van elke hypersfeer een ringvormige verstoring. In werkelijkheid is deze ring uiteraard een bol: het grens’vlak’ waar een andere hyperbol zich in onze hyperbol boort, maar we nemen die waar als een schijf, zoals we ook de maan of een planeet als een schijf waarnemen.

Kortom: er is een eenvoudige manier om uit te vinden of ons heelal frontaal botst met een ander heelal. Als er gigantische ringvormige structuren in de kosmische achtergrondstraling worden waargenomen, veel groter dan door de bekende astronomische processen kan worden verklaard, weten we dat dit de gevolgen zijn van de botsing. Dit is precies wat  samenwerkende teams kosmologen nu aan het doen zijn. Tot nu toe was dat onmogelijk – er bestonden geen wiskundige algoritmen om de data van de kosmische achtergrondstraling efficiënt uit te kammen op ringvormige structuren. Ook moet van gevonden patronen worden vastgesteld of deze toevallig tot stand zijn gekomen of echt het gevolg zijn van een botsing.

Het team deed een simulatie van hoe de kosmische achtergrondstraling er uit zou zien zonder en met botsingen met andere heelallen. Ook ontwikkelden ze een baanbrekend nieuw algoritme – wiskundige manier om iets aan te pakken – waarmee is te bepalen welk scenario het beste overeenkomt met de werkelijk waargenomen  kosmische achtergrondstraling.

Ze zijn overigens niet de eersten die op jacht gingen naar enorme ringvormige structuren. Wiskundige grootheid Roger Penrose ging hen met kosmoloog Gurzadyan voor[2].

Lees ook: ‘Veel-werelden-kwantuminterpretatie betekent multiversum’

Bronnen
1. Hiranya V. Peiris et al., First Observational Tests of Eternal Inflation: Analysis Methods and WMAP 7-Year Results, Arxiv.org (2011)
2. V. G. Gurzadyan en R. Penrose, Concentric circles in WMAP data may provide evidence of violent pre-Big-Bang activity, Arxiv.org (2011)
3. First observational test of the multiverse, Physorg.com (2011)

Wie zou niet net als de Enterprise sneller dan het licht willen kunnen reizen om verre werelden en vreemde verschijnselen te ontdekken?

‘Alcubierre warp drive kan sneller dan het licht’

De speciale en algemene relativiteitstheorie van Albert Einstein verbieden reizen sneller dan het licht. Dat is heel vervelend, want zo duurt een reisje naar hartje Melkweg 26 000 jaar en naar onze buur, het Andromedastelsel, zelfs twee miljoen jaar. Minimaal. Zo wordt het natuurlijk nooit wat met ruimtecruises naar Sirius B of de Pleiaden. Maar misschien heeft de Mexicaan Miguel Alcubierre de oplossing.

Het probleem
Niets ter wereld kan voor zover we weten sneller bewegen dan het licht. In een vernuftig experiment is zelfs aangetoond dat ook door kwantumeffecten individuele lichtdeeltjes nooit sneller kunnen bewegen dan c, de lichtsnelheid. Kortom: het is natuurkundig gezien onmogelijk om te ontsnappen aan de greep van de relativiteitstheorie. Zodra een ruimtereiziger de lichtsnelheid nadert, kost het steeds meer energie om de snelheid ook maar iets te verhogen. Op een gegeven moment zit er zelfs vele malen meer bewegingsenergie in de reiziger dan in zijn massa, als deze in energie wordt omgezet. Kortom: zo snel willen reizen als het licht vereist bovenmenselijke hoeveelheden energie. Ook veranderen zelfs onschuldige atomaire deeltjes als waterstofatomen bij die snelheid in verwoestende projectielen.

Wie zou niet net als de Enterprise sneller dan het licht willen kunnen reizen om verre werelden en vreemde verschijnselen te ontdekken?
Wie zou niet net als de Enterprise sneller dan het licht willen kunnen reizen om verre werelden en vreemde verschijnselen te ontdekken?

Ruimtetijd als rubber
Miguel Alcubierre bedacht een oplossing, een bijzondere ruimtetijdmetriek die consistent is met Einsteins theorie. Wat als we niet alleen het ruimteschip zelf, maar ook de omringende ruimte versnellen? De ruimte voor het schip wordt ingekort, terwijl de ruimte achter het schip wordt uitgerekt. Alsof je vooruitkomt, door het tapijt voor je samen te laten trekken en achter je uit te laten zetten (het werkelijke plaatje is iets ingewikkelder dan dit). Voor de inzittenden van het schip verandert er niets. Hun eilandje ruimtetijd blijft intact. Om het schip heen zijn echter titanenkrachten aan het werk. Terwijl ze stil lijken te staan, bevinden ze zich plotseling bij Alfa Centauri.

Hoe werkt de Alcubierre drive?
Het klinkt te mooi om waar te zijn en dat is het dan ook. Miguel Alcubierre deed een aantal gewaagde veronderstellingen. Zo veronderstelde hij dat er zoiets als negatieve energie bestaat. Energie dus die als deze in aanraking komt met ‘normale’ energie, oplost in het niets. De natuurkundige bewijzen voor deze gewaagde stelling zijn, voorzichtig uitgedrukt, flinterdun. Ook is er exotische materie nodig: materie met negatieve massa.
Dan zijn er nog een aantal probleempjes. Zo is er volgens sommige berekeningen meer energie nodig dan er zich in het hele heelal bevindt voor een klein tripje naar de andere kant van de Melkweg. Toch jammer als je aankomt en het heelal bestaat niet meer. De meeste natuurkundigen achten daarom de kans klein dat de Alcubierre drive ooit in de praktijk zal worden gebracht.

Maar wie weet vergissen ze zich. Dat deden ze namelijk al vaker…

Bronnen
Alcubierre space drive (Wikipedia)

Tachyonen zijn hypothetische deeltjes die alleen sneller dan het licht kunnen reizen.

Wat gebeurt als de tijd stopt?

Wat zou er gebeuren als van het ene op het andere moment de tijd plotseling stil zou komen te staan? Tot nu toe was dat metafysische speculatie, maar natuurkundige Igor Smolyaninov is er in geslaagd het Einde van de Tijd na te bootsen. In een onverwacht alledaags materiaal. Wat gebeurt er als de tijd letterlijk opraakt?

Universum nabootsen in grafeen
Natuurkundigen vinden steeds meer fysische systemen die gebruikt kunnen worden als model van ruimtetijd. Zo kunnen ze spelen met de algemene relativiteitstheorie in een systeem dat wiskundig gezien erg lijkt op ruimtetijd. Een paar voorbeelden: elektronen in grafeen, het kippengaas van koolstofatomen dat de ontdekkers een Nobelprijs opleverde, gedragen zich bij afkoelen ongeveer zo als het universum vlak na de Big Bang waardoor natuurkundigen in staat zijn, door grafeen te koelen meer te weten te komen van het vroege heelal.

Elektromagnetische ruimte

Het Einde der Tijden - wat zou er gebeuren? - Bron: Flickr
Het Einde der Tijden – wat zou er gebeuren? – Bron: Flickr

Een ander voorbeeld is de wiskundige gelijkenis tussen licht in een elektromagnetische ruimte (doorzichtig medium) en in ruimtetijd. Fysici hebben kort geleden ontdekt hoe ze in deze elektromagnetische ruimte dingen kunnen aanleggen als kwantumschuim, de Big Bang, zwarte gaten en zelfs het hele multiversum. Moeilijk te overtreffen, maar Igor Smolyanov is er nu toch in geslaagd. Hij heeft in zijn nieuwste experiment het einde van de tijd gemodelleerd.

Experimenteren met het einde van de tijd
Smolyaninov’s techniek maakt gebruik van metamaterialen. Metamaterialen kunnen zo worden samengesteld dat ze zich gedragen als een tweedimensionale ruimte met een tijddimensie. Overigens kan andersom ook: twee tijddimensies en één ruimtedimensie, bijvoorbeeld. Metamaterialen zijn veelzijdig.
Volgens Smolyaninov ontstaat een interessante situatie als de twee materialen tegen elkaar worden gezet. Als de tijddimensie loodrecht op de ruimtedimensie staat, eindigt de tijd domweg plotseling, aldus Smolyaninov. Hij noemt deze situatie het Einde der Tijden.

In hun experiment lieten de experimentatoren ruimtetijd overgaan  in een Euclidische ruimte (dus zonder tijd). Ze bouwden dit scenario na in metamaterialen met optische eigenschappen die lijken op de eigenschappen van ruimtetijd. Hiervoor gebruikten ze de plasticsoort polymethyl methacrylaat (PMMA), beter bekend als perspex of plexiglas. Dit materiaal werd in stroken op een goudlaagje aangebracht. Het licht beweegt zich in de vorm van plasmons (een soort energievibraties die langs een oppervlak reizen) langs dit oppervlak. Er werden twee kosmologische situaties nagebootst: het einde van de ruimte en het einde van de tijd.
Het einde van de ruimte leidt tot een Rindler-horizon, iets dat veel weg heeft van een waarnemingshorizon,  en liet de door Hawking al voorspelde Hawkingstraling zien.

Maar wat gebeurt er aan het einde van de tijd?
Volgens Smolyaninov divergeert het elektromagnetische veld aan het einde van de tijd (m.a.w. waaiert uit). Volgens het Physics Blog van MIT Technology Review een vrij saaie ontwikkeling, maar wie weet is dat precies wat er nu gebeurt. Immers, er lijkt een geheimzinnige invloed, de donkere energie, het heelal steeds sneller uiteen te rukken. Zou het einde der tijden steeds sneller naderen? Kunnen we op tijd uit dit heelal ontsnappen? De zaak blijft interessant.

Bron
Igor I. Smolyaninov et al., Hyperbolic Metamaterial Interfaces: Hawking Radiation From Rindler Horizons And The “End Of Time”, 2011

Waarom is het heelal überhaupt ontstaan? Op deze vraag is nog steeds geen antwoord, al zijn er vermoedens.

Waarom bestaat het heelal?

Het is de grootste vraag van allemaal. Waarom bestaat het heelal? Ongeveer 13,7 miljard jaar geleden bestond er geen heelal. Alles wat we nu kennen was in die tijd samengeperst in een punt. Vanaf dat punt ontstonden ruimte en tijd spontaan uit het niets. Wat zette dit proces in gang?

Ontstaan van het heelal onlogisch
Het is al moeilijk voorstelbaar dat het heelal ontstond uit het Niets. Een nog grotere vraag is: wat moeten we ons voorstellen bij dit Niets? Alle redelijk zinnige vragen vanuit wetenschappelijk oogpunt. Per slot van rekening is ons heelal een monument van onwaarschijnlijkheid. Hoe kan uit het niets iets ontstaan met een extreem lage entropie, zoals ons heelal? Natuurkundig gezien is dat absurd. De onwaarschijnlijkst voorstelbare gebeurtenis.
Het Niets is ook de hoogst entropische toestand denkbaar. Hoe je het Niets ook manipuleert, het blijft Niets.

Symmetriebreking heel natuurlijk

Waarom is het heelal überhaupt ontstaan? Op deze vraag is nog steeds geen antwoord, al zijn er vermoedens.
Waarom is het heelal überhaupt ontstaan? Op deze vraag is nog steeds geen antwoord, al zijn er vermoedens.

Behalve entropie speelt echter ook symmetrie een rol. Naar nu blijkt, verstoort de natuur graag symmetrie. Symmetriebreking is een geliefd onderwerp in de meest succesvolle modellen van kosmische evolutie en de natuurkrachten. Bij heel hoge energie smelten bijvoorbeeld de elektromagnetische kracht en de zwakke kracht samen tot één kracht: de elektrozwakke kracht. Het Niets is de meest symmetrische toestand denkbaar. Je kan het op alle mogelijke manieren omkeren en verplaatsen, maar het blijft nog steeds Niets.

De conclusie is daarom volgens sommige natuurkundigen onontkoombaar. Dat er iets bestaat – wat dan ook – is natuurlijker dan dat er niets bestaat. En inderdaad voorspelt kwantummechanica dat er niet iets is als absolute leegte. De leegte heeft een volmaakte zekerheid. Veel te zeker voor de kwantummechanica, die voorspelt dat er in een dergelijke leegte voortdurend deeltjesparen verschijnen en verdwijnen. We zijn in dat opzicht niets anders dan een tijdelijk boertje van de kwantumzee.

Voor de Big Bang
Kan een dergelijk effect de oorsprong van het heelal verklaren? Dat is heel plausibel, aldus astronoom Wilczek. Er is geen barrière tussen het Niets en een rijk universum vol materie, aldus hem. De Big Bang was domweg het Niets, dat deed wat het van nature doet.  Maar wat gebeurde er dan vóór de Big Bang? En hoe lang duurde deze fase? Een probleem: de tijd begon met de Big Bang. En er is nog een meer verbijsterende mogelijkheid. Misschien kan het Niets domweg niet bestaan.

Heelal heeft netto energieinhoud nul
De redenering gaat ongeveer als volgt. Kwantumonzekerheid staat toe dat tijd en energie worden uitgewisseld, dus iets dat een lange tijd bestaat moet heel weinig energie hebben. Dus iets dat vele miljarden jaren bestaat zoals ons heelal moet een zeer lage energie hebben, ongeveer gelijk aan nul. In feite wordt de positieve energie van de materie en straling van het heelal gecompenseerd door de negatieve energie in het totale zwaartekrachtsveld van het heelal.  Het hele heelal samen heeft dus een energie-inhoud van nul. Met andere woorden: het hele heelal kostte, energetisch gesproken, netto niets. Ongelofelijk, maar waar.

Dit lost nog een ander vervelend probleem op: de wet van behoud van energie. Energie kan niet ontstaan of verdwijnen uit het niets. Als er netto echter nul energie overblijft, verdwijnt het probleem. Een universum dat simpelweg uit het Niets tevoorschijn springt, is niet alleen mogelijk, maar zelfs waarschijnlijk. Met andere woorden: iets is niets, stelt kosmoloog Guth. Maar hebben begrippen als energie, kwantumonzekerheid en tijd wel betekenis buiten dit heelal? De vragen blijven.

Lees ook: Leven we in een wiskundig stelsel?

De Pioneers 10 en 11 gaven niet alleen heel veel informatie over de gasreuzen Jupiter en Saturnus. Ze lieten ook zien dat de heliopauze heel chaotisch is en blijken onderhevig aan een raadselachtige kracht.

Raadselachtige Tajmar effect verklaard?

Als een draaiende lasergyroscoop in de buurt van een supergekoelde draaiende ring wordt geplaatst, gaat de gyroscoop een beetje in dezelfde richting als de ring versnellen. Wetenschappers weten niet waarom. Dat wil zeggen: tot nu. Met ingrijpende gevolgen. Als McCulloch gelijk heeft, is het mogelijk massa minder traag te maken en zat Einstein er naast. En hebben we mogelijk een manier gevonden om naar de sterren te reizen.

Raadselachtige ontdekking

Het Tajmar-effect. Een gyroscoop 'sleept' een supergeleidende schijf mee
Het Tajmar-effect. Een gyroscoop 'sleept' een supergeleidende schijf mee

De onverklaarbare versnelling werd in 2007 ontdekt door Martin Tajmar, die op dat moment werkte aan de vakgroep Ruimtevaarttechnologie van het Oostenrijkse Technisch Instituut in Seibersdorf. Tot dusver is het Tajmar effect alleen in dit ene laboratorium geobserveerd, wat het wetenschappelijk gezien verdacht maakt. Maar toch. Sommige wetenschappers zijn sindsdien druk op zoek naar een verklaring voor dit raadselachtige effect.

Hoe werkt een lasergyroscoop?
In een recente studie heeft Michael McCulloch van de Engelse universiteit van Plymouth een mogelijke verklaring gevonden. Hiervoor nam hij een diepe duik in de rijkgevulde natuurkundige schatkist van contra-intuïtieve verschijnselen.

Hij begint met een gedetailleerde analyse van wat een lasergyroscoop eigenlijk precies doet.  Lasergyroscopen sturen licht in twee richtingen door een ring. Als de ring sneller of langzamer gaat draaien, veranderen de interferentiepatronen van het licht in de ring. Daarvoor hoeft er maar een verschuiving van enkele nanometers – dat is misschien vijftig atoombreedtes – op te treden. Daardoor zijn lasergyroscopen extreem nauwkeurig.

Trage massa vliegwiel vermindert
McCulloch denkt dat de gyroscoop lijkt te versnellen omdat de traagheid van de gyroscoop verandert. Als er iets een heilig principe is in de natuurkunde is dat wel het behoud van impuls of het draaiende zusje daarvan, draaimoment. Dus als de traagheid vermindert, betekent dat dat de snelheid hoger moet worden om zo de  impuls gelijk te houden. Dit zou volgens McCulloch de verandering in snelheid verklaren.

Unruh-effect
Het uitwerken van kwantummechanica  voorspelt vaak merkwaardige verschijnselen. Zo is er het Unruh effect. Als een voorwerp versnelt, lijkt het heelal voor warmer te zijn dan achter. Dat heeft te maken met de virtuele deeltjes waarmee de leegte gevuld is. Gewoonlijk hebben deze energie nul, maar deze krijgen energie ten opzichte van het voorwerp als dit op ze af vliegt. Als je heel hard (brom)fietst, doen de regendruppels pijn in je gezicht. Ze lijken heel veel energie te hebben, terwijl ze eigenlijk stilstaan. Deeltjes met energie nul lijken daardoor een positieve energie, dus een netto warmte-effect, te hebben.

Hubble-schaal Casimir effect
Volgens McCullochs voorstel wordt de traagheid van de gyroscoop bepaald door de omringende Unruh straling die wordt gemodificeerd door een Hubble-schaal (dus kosmisch) Casimir-effect. In dit model wordt de Unruh straling opgewekt door de draaiende schijf. Ter informatie: elke richtingsverandering (zoals van een deeltje op een draaiende schijf) is fysisch gezien een versnelling. De schijf versnelt dus ten opzichte van de rest van het heelal, zoals de aarde, sterren in de hemel en de koude draaiende ringen. Het Hubble-schaal Casimir-effect is een effect in de kwantumtheorie dat in dit geval de vorming van langere Unruh-golven verhindert en zo indirect de trage massa van de gyroscoop beïnvloedt. McCulloch noemt dit model “modified inertia due to a Hubble-scale Casimir effect” (MiHsC) of kortweg “quantized inertia.”

Als de gyroscoop op kamertemperatuur is, wordt deze omringd door kortegolf Unruh straling. Korte elektromagnetische golven zijn energierijker dan lange golven (een lichtdeeltje is kortgolviger en dus energierijker dan een radiofoton). Als de omgeving wordt afgekoeld tot ongeveer het absolute nulpunt, wordt de golflengte van de Unruh straling langer, waardoor ze niet meer in de ruimte ‘passen’: het Hubble-schaal Casimireffect. Als de supergekoelde ring begint te draaien, zorgt de versnelling van de ring voor kortere Unruh-golven, die makkelijker in de ruimte passen. De traagheid van de gyroscoop neemt toe, waardoor hij langzamer draait.

De Pioneers 10 en 11 gaven niet alleen heel veel informatie over de gasreuzen Jupiter en Saturnus. Ze lieten ook zien dat de heliopauze heel chaotisch is en blijken onderhevig aan een raadselachtige kracht.
De Pioneers 10 en 11 gaven niet alleen heel veel informatie over de gasreuzen Jupiter en Saturnus. Ze lieten ook zien dat de heliopauze heel chaotisch is en blijken onderhevig aan een raadselachtige kracht.

Behoud van impuls leidt tot versnelling
Volgens het model probeert de gyroscoop met de ring mee te bewegen om zo zijn impuls te behouden. Voor een rotatie met de klok mee moet de gyroscoop met een snelheid van 2,67 x 10-8 maal de versnelling van de ring gaan roteren. Tegen de klok in wordt deze snelheid gehalveerd.

Opmerkelijk is dat dit model Tajmar’s waarnemingen nauwkeurig verklaart. Tajmar nam waar dat de versnelling van de  gyroscoop ongeveer 3 x 10-8 maal die van de ring bij rotatie met de klok mee en de helft daarvan voor rotaties tegen de klok in. Met MiHsC kan en hoeft niet geknoeid te worden met natuurconstanten, dus de theorie stemt overeen met de observaties zonder numeriek afgesteld te worden.

McCullochs model kan ook verklaren waarom de versnelling tegen de klok in kleiner is dan met de klok mee. Als de gyroscoop met de ring mee begint te draaien, verandert de beweging ten opzichte van de vaste sterren. Op het noordelijk halfrond zorgt dit effect voor een grotere versnelling met de klok mee. Dit heeft te maken met de draaiing van de aarde. Volgens de theorie is het gedrag op het zuidelijk halfrond daarom precies tegenover gesteld.

Einstein heeft niet meer het laatste woord
Hoeksteen van Einsteins relativiteitstheorie is het equivalentieprincipe: trage massa = zware massa. Daarom vallen lichte en zware voorwerpen even snel. Als MiHcS inderdaad waar is, betekent dat volgens McCulloch dat trage massa helemaal niet altijd precies gelijk is aan zware massa. In zijn artikel legt hij uit waarom in extreem gevoelige torsie-experimenten toch geen verschil is aangetoond. Ook heeft zijn theorie gevolgen voor het gedrag van sterren aan de rand van de Melkweg. Als hun traagheid kleiner is dan hun massa, moeten ze sneller bewegen om niet naar binnen te vallen. Donkere materie?

Tajmar effect verklaart raadselachtige versnelling ruimtevaartuigen
Doorgaans worden ruimtevaartuigen langs planeten gestuurd om ze op kosten van Moeder Natuur nog een flinke zet mee te geven. Heel vreemd is dat sommige ruimtevaartuigen dan een merkwaardige sprong in hun snelheid vertonen. In een eerder artikel liet McCulloch zien dat zijn theorie MiHsC redelijk goed deze flyby anomalieën beschrijft.

HIj heeft ook laten zien dat dit de Pioneer anomalie verklaart. Om raadselachtige redenen blijken de Pioneer satellieten afgeremd te worden nu ze het zonnestelsel verlaten. De verklaring volgens McCulloch is dat hun traagheid vermindert, waardoor de zwaartekracht van de zon meer invloed krijgt en ze meer afremt. McCulloch voorspelt dat als de ronddraaiende ring 10.000 keer lichter wordt uitgevoerd, het effect afneemt met de afstand. Hij hoopt dat Tajmar’s groep dit uittest. Overigens denken andere natuurkundigen dat dit effect wordt veroorzaakt door een warmtelek in de kernreactor van de Pioneers.

Nut van deze ontdekking
Het is uiteraard bijzonder handig om een techniek te hebben om de traagheid van een voorwerp te verminderen. Zo kan je met weinig energie enorme snelheden bereiken. Uiteraard ideaal als je snelheden in de buurt van de lichtsnelheid wilt bereiken. Zou je Unruh straling kunnen genereren om zo de trage massa van een voorwerp te kunnen veranderen en het zo te verplaatsen? In een eerder artikel besprak McCullough deze mogelijkheid.

Bronnen:
M. E. McCulloch. “The Tajmar effect from quantised inertia.” EPL, 95 (2011) 39002
.

Wat zou ET van ons willen?

Stel, de aarde wordt bezocht door buitenaardse wezens. Wat zouden aliens van ons willen? Er zijn enkele mogelijkheden, die zeer onprettige tot vrij milde gevolgen zullen hebben. Overleeft de mensheid First Contact?

Grondstoffen of mijnbouw?

Als buitenaardse bezoekers kwade bedoelingen met ons hebben, heeft dat vermoedelijk uiterst akelige gevolgen.
Als buitenaardse bezoekers kwade bedoelingen met ons hebben, heeft dat vermoedelijk uiterst akelige gevolgen.

Derderangs SF films zoals Independence Day geven de indruk dat de aarde een gewilde plek is om grondstoffen te oogsten. In feite is dit onzin. We zagen al het heel veel energie kost om van de ene ster naar de andere te reizen, in massa uitgedrukt misschien wel evenveel als het gewicht van de lading. Het is dan veel slimmer om de grondstoffen uit het eigen zonnestelsel te halen. De asteroïdengordels en Kuipergordels in het eigen zonnestelsel zijn de meest voor de hand liggende bestemming, niet een ster lichtjaren ver.

Of desnoods de atoomkernen die je nodig hebt door middel van bijvoorbeeld kernfusie zelf produceren. Ongeveer op de manier waarop onderzoekers nu extreem zware kunstmatige atoomkernen proberen te maken. Dat kost veel minder energie dan exotische materie van tientallen lichtjaren ver te halen. Voor grondstoffen zijn er overigens veel interessantere plekken dan de aarde. Zeldzame zware elementen zijn er in de buurt van geëxplodeerde supernova’s en neutronensterren veel meer dan hier. Wel is de zon uitzonderlijk zuurstofrijk en koolstofarm.

Niettemin is het uiteraard mogelijk dat er een nog onbekende grondstof bestaat waar bij een toekomstige beschaving grote behoefte aan is en waar dit zonnestelsel of de aarde toevallig zeer rijk aan is. Denk aan magnetische monopolen, mini-zwarte gaten of wellicht exotische vormen van donkere materie. We weten het domweg niet. Welke achttiende-eeuwer had kunnen voorspellen dat er oorlogen gevoerd zouden worden over brandbare zwarte blubber? En als wij toevallig op de rijkste bron van die grondstof in de galactische omgeving zitten, zoals de Nav’i in de film Avatar, dan hebben we uiteraard een probleem.

Zorg dat je dit Alien Invasion Survival Handbook in huis hebt liggen. Zo lachen ze zich dood.
Zorg dat je dit Alien Invasion Survival Handbook in huis hebt liggen. Zo lachen ze zich dood.

Een einde aan ons als bedreiging maken?
Dit is minder onwaarschijnlijk. Zeker naar kosmische maatstaven ontwikkelt onze beschaving zich op technisch terrein zeer snel. Weliswaar kunnen we nu op galactische schaal gezien nog niet veel schade aanrichten, maar over een eeuw wel. We zouden dan bijvoorbeeld nanoreplicatoren kunnen hebben uitgevonden, die het zonnestelsel in hoog tempo omzetten in een supercomputer en naburige zonnestelsels koloniseren. Als buitenaardse wezens ons in de gaten houden, zullen ze vermoedelijk proberen ons te accommoderen of integreren in hun invloedssfeer, ons te onderwerpen of te vernietigen voordat de groei van onze beschaving explosief en oncontroleerbaar wordt.

Ons als slavenras houden?
Een galactisch rijk besturen is ondoenlijk. Het licht doet er tienduizenden jaren over om van het ene einde van de Melkweg naar het andere einde te reizen (tenzij er een realistsiche methode bestaat om sneller te reizen dan het licht) die we nog niet kennen. Galactische rijken als zodanig bestaan dus vermoedelijk ook niet. Het galactische beschavingsnetwerk zal vermoedelijk meer weg hebben van een interstellaire tamtam, waarbij voortdurend waardevolle informatie wordt uitgewisseld. Nogmaals: deze projectie is gebaseerd op de huidige kennis van de natuurwetten.

Kolonisatie?
Gezien de inktzwarte koloniale geschiedenis van de Europeanen en de Arabieren, waarin de inheemse bevolking met geweld werd bekeerd, geassimileerd of uitgemoord, is deze gedachte niet zo gek. Vooral in oudere SF, geschreven toen de kolonisatie nog in volle gang was en rassentheorieën erg populair waren, komt deze gedachte veel voor. De gedachte is dat de aliens de mensheid uitmoorden en vervolgens hier zelf gaan wonen. Gezien de enorme afstanden tussen de sterren ligt dit niet echt voor de hand, al blijft het in theorie mogelijk. Het is vanuit buitenaards standpunt veel slimmer een kolonisatieschip naar een ster met een omvangrijke planetoïdengordel te sturen en hier door zelfreplicerende robots een grote hoeveelheid ruimtehabitats te laten bouwen. In totaal komt er zo een veelvoud van de hoeveelheid leefruimte.

Dan is er nog een probleem. Immers, op een wereld met een complexe biosfeer als de aarde komen zeer veel soorten eencelligen voor die, zo weten we op aarde, erg creatief zijn in het benutten van nieuwe voedingsbronnen. Ook al bewegen deze voedingsbronnen zich voort met borstelige tentakels en komen deze uit de buurt van de ster Wega. Dus ook hier geldt: in theorie is het een mogelijkheid. In de praktijk is het voor aliens dus veel interessanter hun eigen zonnestelsel of naburige bruine dwergen of zwerfplaneten te benutten.

Handel?
De aarde bevat een enorme biodiversiteit en culturele diversiteit. Het meest waardevolle aan de aarde is de enorme hoeveelheid informatie die in het DNA van het ecosysteem en de menselijke cultuur besloten ligt. En, wie weet, ook niet-menselijke culturen, zoals die van walvisachtigen of mensapen. Misschien horen hier unieke inzichten bij die van pas komen voor de buitenaardse beschaving. Informatie is ook makkelijker mee te nemen dan materie. Vermoedelijk is het voor aliens dus het meest interessant om informatie uit te wisselen met de aardbewoners. Het liefst op een vriendelijke manier en dat kan ook, want informatie raakt nooit op. Deze informatie is het meest waardevol als de aardse cultuur niet is ‘vervuild’ met al te veel buitenaardse informatie. Een beperkte hoeveelheid buitenaardse informatie leidt juist tot een explosie aan ontwikkeling.

Exoplaneet biedt spectaculair vuurwerk

Hete Jupiters zetten waarschijnlijk alles wat we ons kunnen voorstellen onder bizarre hemelverschijnselen totaal in de schaduw. Check deze spectaculaire video.

De spookachtige gloed wordt veroorzaakt door de felle worsteling van het magneetveld van de hete Jupiter, een Jupiterachtige gasreus die dicht bij een ster staat, met een corona-uitbarsting en het magneetveld van de ster. Het gaat hier door de korte afstand tussen beide hemellichamen om werkelijk onvoorstelbare energieën.

Astronomen verwachten daarom dat er een spookachtige gloed zal hangen aan de nachtzijde van de hete Jupiter. Als een zonnevlam door het sterke magneetveld heenbreekt, kost het een paar uur voor de ontlading helemaal is verdwenen.

De poollichten vormen zich rond de evenaar en verplaatsen zich dan naar de rest van de planeet.
De poollichten vormen zich rond de evenaar en verplaatsen zich dan naar de rest van de planeet.

Bron:
Harvard-Smithsonian Center for Astrophysics

Een quasar. Het zwarte gat in het centrum zuigt een enorme draaikolk gas aan.

‘Kosmische oceaan ontdekt’

Rond een verre quasar, de actieve kern van een jong melkwegstelsel, is een enorme hoeveelheid water ontdekt van honderdduizend zonsmassa’s. Deze hoeveelheid water stelt alle oceanen op aarde totaal in de schaduw. Zou zich hier leven hebben kunnen ontwikkelen? En zou er galactische panspermie zijn geweest?

Quasars: onvoorstelbare energiebronnen

Een quasar. Het zwarte gat in het centrum zuigt een enorme draaikolk gas aan.
Een quasar. Het zwarte gat in het centrum zuigt een enorme draaikolk gas aan.

Op het moment dat het licht de quasar verliet, twaalf miljard jaar geleden, was het heelal ongeveer anderhalf miljard jaar oud. Astronomen troffen zelden zo’n waterrijke omgeving rond een quasar aan. Een zoveelste demonstratie van de alomtegenwoordigheid van water in het universum, aldus astrofysicus Matt Bradford, als onderzoeksleider betrokken bij het onderzoek.

Een quasar is in feite een enorm groot zwart gat in het centrum van een sterrenstelsel, dat volop materie opslokt. Deze materie valt in het zwarte gat, wordt daardoor extreem heet en zendt heel veel energie uit. Ook het zwarte gat in het midden van ons eigen sterrenstelsel was vermoedelijk miljarden jaren geleden een quasar. Deze quasar, met de poëtische naam APM 08279+5255 huisvest een zwart gat van twintig miljard zonsmassa’s. De quasar produceerde in zijn  eentje meer energie dan tienduizend grote stelsels ter grootte van onze eigen Melkweg anno nu doen.

Kosmische oceaan van water rond de quasar
Water komt veel voor in het universum, zij het niet zoveel als in deze quasar. Onze Melkweg bevat bijvoorbeeld een vierduizendste van de hoeveelheid water die in deze quasar is aangetroffen. Overigens is de waterdampwolk extreem ijl naar aardse maatstaven. Een kubieke kilometer van deze waterdampnevel zou ongeveer drie gram water bevatten. Het gas is ook koud – 53 graden onder nul. Dit is vijf maal heter en tien tot honderd keer dichter dan gebruikelijk in een melkwegstelsel van nu. In deze vorm zou geen enkel aards organisme het er lang uithouden.

Deze waterdamp is maar een van vele gassen die de quasar omringen en tonen aan dat de quasar het gas in r̦ntgenstraling en warmtestraling verhit. Door de interactie van de quasar en de gaswolk ontdekten de astronomen dat de omringende gaswolk enorm is. De quasar kan nog wel zes keer zo zwaar kan zijn geworden als op het moment dat het licht de quasar verliet. Of dat ook gebeurt is de vraag. Veel van het gas zal vermoedelijk condenseren in sterren of Рen nu wordt het heel interessant Рplaneten. Kosmische waterdruppels dus, zo groot als de aarde.

Op waterrijke planeten die zich miljarden jaren geleden vormden, kan zich al vlak na het ontstaan van het heelal, vanaf 12 miljard jaar geleden, het eerste leven hebben gevormd.
Op waterrijke planeten die zich miljarden jaren geleden vormden, kan zich al vlak na het ontstaan van het heelal, vanaf 12 miljard jaar geleden, het eerste leven hebben gevormd.

Was deze kosmische oceaan de kraamkamer van het leven?
Water bestaat uit de atoomsoorten (elementen) waterstof en zuurstof. Vlak na de Big Bang bestond er alleen waterstof en helium. Die zuurstof in het water moet dus geproduceerd zijn door de allereerste exploderende sterren. Deze sterren vormen vlak voor de supernova behalve zuurstof, ook andere elementen die het leven nodig heeft, zoals de zeer belangrijke koolstof en stikstof.

Het moet daar een enorme heksenketel geweest zijn, waarin zich allerlei chemische verbindingen zoals aminozuren en nucleïnezuren, de bouwstenen van het leven, vormden. De quasar gaf een enorme hoeveelheid energie. Voldoende voor ingewikkelde chemische reacties. Uit de veel ijlere wolken in de Melkweg vormen zich al sterren, laat staan in een zeer dichte wolk als deze. Het is haast onvermijdelijk dat zich in een dergelijke enorme omgeving leven heeft gevormd.

Galactische panspermie: aards leven als laatkomer
Als we aannemen dat ook de Melkweg in haar jeugd zo waterrijk was, moet het eerste leven zich vele miljarden jaren eerder hebben gevormd. Zou het leven op aarde zijn ingezaaid vanuit het centrum van de Melkweg, via ijssplinters die miljarden jaren lang door de Melkweg reisden? of misschien van het ene melkwegstelsel naar dat van ons? En zouden er buitenaardse beschavingen bestaan, ontstaan in dit verre verleden, die nu miljarden jaren oud zijn?

Twaalf miljard jaar is heel lang. Het leven ontstond extreem snel op aarde. We zijn per slot van rekening kosmische laatkomers. En de primitiefste soorten bacteriën en archeeën zijn vaak zeer resistent tegen kosmische straling. Een fascinerende gedachte.

Bronnen
1. Astronomers Discover Largest and Most Distant Reservoir of Water Yet, ScienceDaily.com (2011)
2. DISCOVERY OF WATER VAPOR IN THE HIGH-REDSHIFT QUASAR APM 08279+5255 AT Z=3.91, preprint op ArXiv (2011)

Waardoor wordt deze geheimzinnige ring veroorzaakt?

Kern melkweg omringd door mysterieus lint

Een ruimtetelescoop die het stoffige centrum van de Melkweg bestudeert, heeft een enorm golvend lint van extreem koel materiaal aangetroffen. Tot nu hebben astronomen alleen kleine stukjes van het lint waargenomen, dat veel wel geeft van het symbool voor oneindigheid (∞).  Kortom: een nieuw en opwindend mysterie, precies in het hart van de Melkweg, aldus astronoom Sergio Molinari van het Institute of Space Physics in een persbericht. Molinari en anderen beschrijven het vreemde lint in een artikel dat alvast te lezen is op arXiv.org[1].

Waardoor wordt deze geheimzinnige ring veroorzaakt?
Waardoor wordt deze geheimzinnige ring veroorzaakt?

Astronomen bestudeerden hiervoor infraroodbeelden van het centrum van de Melkweg. Infrarode straling kan door gaswolken heendringen. Vorige opnames waren niet scherp genoeg om het lint waar te nemen, maar de ESA-satelliet Herschel Space Observatory heeft de haarscherpe IR-beelden geleverd waarmee de structuur is opgehelderd.

 

De beelden van de telescoop lijken er op te wijzen dat de ring vijftien graden kelvin koud is, zie foto. Warmere gedeelten zijn blauw, terwijl de koude gedeelten rood zijn. De ring heeft twee segmenten die uit de pannenkoekachtige schijf van de Melkweg steken. Aanvullende gegevens van radiotelescopen op het aardoppervlak wijzen erop dat de ring met een uniforme snelheid ronddraait en zich als één samenhangend geheel gedraagt.

Astronomen weten niet zeker waarom de twee lobben van de ring naar boven wijzen, maar vermoeden dat de aantrekkingskracht van naburige melkwegstelsels – de Andromedanevel van 2,5 miljoen lichtjaar ver weg bijvoorbeeld – verantwoordelijk is.

Er kan ook een andere verklaring zijn. Er zijn namelijk een aantal zeer vreemde dingen aan de hand in de kern van de Melkweg. Sommige astronomen denken dat er ongeveer tien miljoen jaar geleden een dwergstelsel is opgeslokt door de Melkweg.

Bron
1. S. Molinari et al., A 100-parsec elliptical and twisted ring of cold and dense molecular clouds revealed by Herschel around the Galactic Center, Arxiv.org (2011)